SOLUTIONS TO THE EQUATIONS OF A COMPRESSIBLE
LAMINAR BOUNDARY LAYER AT A PLATE WITH
SUDDENLY CHANGING BOUNDARY CONDITIONS

V. I. Eliseev UDC 532.526.2

A method is proposed for constructing the solutions to the equations of a compressible
boundary layer at a plate with suddenly changing boundary conditions, when u ~ T and
Pr=1.

A sudden change in the boundary conditions of a boundary layer reveals a region where the funda-
mental premises of the theory of the laminar boundary layer cease to be valid, The characteristic dimen-
sion of this region is commensurable with the thickness of the boundary layer and its effect on the main-
stream is revealed when quantities of second-order smaliness are taken into account, making it feasible to
analyze such problems by the methods used in the theory of the boundary layer for obtaining solutions for
the contiguous regions, which can then be adjoined according to one or another principle,

Here the author uses the method of outer and inner expansions (1] for constructing the sought solu-
tion. It will be assumed that region 2 (Fig. 1) where the boundary conditions differ from the original ones
lies inside region 1. The idea of subdividing the entire boundary layer into an outer and an inner region,
with the inner one treated as a new boundary layer, was already conceived and used earlier in [2-9].

In order to apply the method of adjoint asymptotic expansions, we introduce a parameter ¢ which as
a small parameter would be used for obtaining the outer and the inner coordinates. Let §; be a quantity
characterizing the thickness of the boundary layer at any section x and let §, be a quantity characterizing
the thickness of region 2. Considering that region 2 begins at a certain point x, and then gradually expands
in the downstream direction until at x — « it merges into the entire boundary layer, we conclude that ¢ =9,
/9y varies from 0 to 1 as x runs from x, to infinity. Such an interval of e values makes this parameter
suitable for adjoining the outer and the inner expansions,

We wrife the fundamental equations for the simplest case, namely for u ~ T and Pr =1, in dimen-

sionless form:
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Q=Q =68 [Ry(n) + &Ry (n) + &Ry () +... 1, (2)
n= "1/611
¥ =¥, = 8,84Gy (N) + &Gy (N) + &Gy (N) +. . . 1,
Q= Qy = 8,8 [Py (N) + 8Py (N) + &P, (W) + ... 1, 3
N = v/§,.

respectively. In order that a solution in this form satisfy Egs. (1), it is necessary that the following condi-
tions be satisfied for &; and 0,:

8 = afT (1 +-be 4+ bye? + ... ),
8 = bO OL(1 4+ e+ coe® 4. .. ).

Here b; and ¢, are correction factors accounting for any perturbations which may occur as a result of in-
teraction between regions 1 and 2 behind the point £ =1, With the aid of expressions (4), we obtain the de-
rivative of ¢ with respect to &:

(4)

e =abe [ (1o o+ )%——(I S+ be bt 4. )],
where p =—(1 +kj). This relation yields integral power exponents in the expression for ¢'. Eliminating
¢ from (4), we have

ddy _igp | R - L S

48, a  ld-beber4. ..
The set of factors b; and ¢; cannot be determined uniquely, inasmuch as we do not have the sufficient num-
ber of equations. Considering this, and also noting that 62[§=1 >0, ie., déz/ddiléi(i) > 0 and 6, — &, or dd,
/dé; — 1 at § — e, we relate factors bj and c; in the simplest manner: b = g and ¢; =b;. Now p will be de~
termined after the inner expansions (3) have been inserted into Egs. (1), with the stipulation that the vis-
cous and the dynamic terms in the equations for G, and P be retained. This requirement is satistied with
p =—2, It is easy then to obtain the expressions

g = abre 2 (1 — 31 4 b + bye? + ... ),
8, =8 Ot — 83)1/31 (5)
8, = [ 68 —81 (1))

We write the equations for both the outer and the inner region, affer expansions (2) and (3) have been in-
serted into the equations of the boundary layer:

for the outer region

FiF; — FiF, =0,
’ FyF) — FiFy = — % (F;' — F\FY), ©
FF; — FiFy = — % [2(F,F; — F;Fy) -+ (FiF; — F\Fy) + 2by (FoFy— FyFg) + by (F{ — FyF}) + ?la [Fo" + aFFl,
" FiR = F,R),
FiR; = — _2‘_ (FiRi— F,R, — 2F,RY), (7)
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F0R3=——~3—(2F1R2—}—F2R1-—F1R2——2F2R, 3F3R0)+ [R “‘FoR +(k—1)M2F”]

for the inner region .
= a(Gy — 2G,Gy),

Gy = a[ 3G,G; — 2G,G} — 3G;G, +b, Gy —2G,Gy) |,

G, = a [4GiG; — 2G, G, — 4G;G, + 2G;" — 3Gy,G; + b, (3G,G; — 2GoG; — 3G;G,) -+ by (G] — 2G,G)) ] (8)
‘ P = — a2G,P;,
P;" = —a(2G,P, — GyP} + 3G,P} + b,2G,P),
Py = —a[2G,Py — 2G,P; — GiP; + 3G,P; + 4G,P,
— by (GyP; — 2G,P} — 3G, Py) + b,2G,P;| — (k— 1) M2, Gy’ (9)

The last terms inside the square brackets in the third equation of system (6) and of system (7) are equal to
zero, because functions F, and R, are solutions to the equations of the boundary layer at a semiinfinite flat
plate, The subsequent solutions Fj and Rj can be found by simply integrating Eqs, (6) and (7), which will
yield:

F, = kF,
Fy — EIT (BF; + 24,F)), 10,
Fy— '31T (BFy" + BhykyF, -+ 6k,F),
Ry =RR;+s,
R — 2—‘!(1%1?;; 2R + 5y,
(11)

1 " .
Ry = §F(k?Ro + 6k, 2R} 4 6k3R)) + 5.

The integration constants k; and s; are determined from the condition of adjoint solutions which, according
to the rule of adjoint asymptotic expansions, can be written as:

j+1

— e git2—m) J+2*m

Gyiwe = 2 Gro—mt fm —OF
(12)
JIN*“'“" 2 (j+ 1 m)! = (0) NI
Equations (8) and (9) admit the following asymptotic form of functions Gj and Pj at N — co;
42 j+1

G; = Zoa N7, P;= 2 d]mN (13)

where the coefficients g;4, and dJm can be found from expressions (12), with the possibility of ascertaining
that a;y = F; , »(0) and d](, =Rj+1(0). These last expressions indicate that all rules of adjoint solutions have
been obeyed at any bj.

Boundary Layer with Injection or Suction in Region 2. The boundary condition for function  at N
= 0 will be stipulated as:

Vo=8,8% (A, +edy+ ... ) (14)

Since it follows from (5) that £ =1 + 53(v0 +gvy +...), hence the condition that the first term in expan-
sion (14) is proportional to £% corresponds to the boundedness of the normal injection or suction velocity in
the vicinity of the point £ =1, When Aj =0, the inner region vanishes and the outer region extends to the
plate surface. Expression (14) indicates that the boundary conditions for the first term in the inner exten-
sion of G, are homogeneous at N = 0 and that then

D
Gy = — Fa (O N, (15)
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U /U oo I which yields k; = 0. The solution to the second equa-

q75 *® tion in (8) will be written as '
/*—""—___——f G, = Gy + C\Gyy, (16)
e " ] .
050 W where Gy, =—1/31a3Fy(0)A;N° + A; and Gy, is deter-
’ /*“ mined from the following boundary conditions: Gy,(0)
y, = G,,(0) = 0 and GJ{(0) = 1. With the substitution Gy,
= [1/2:aF5(0)T2/%,,{[1/2:aF0) ! /3N} we obtain for
925} .
’ f Bi1:
v om , I 18
gy +20g, —6blg, +6g,, =0, (= 1 ) aFy (0) } N,
T XXy L 1
g % 10 s ae Xy 8u:0)=g,(0=0, g0 =1.
Fig. 3. Velocity in the wake along its axis; solid
curve represents formula (33), dots represent Equation (17) was integrated numerically and
values according to [11]. its solution is shown in Fig. 2a. Here C, and k,
have been determined from the boundary conditions
at infinity:

Y 2/3
C, = 5.074 [% aF} (0) } * dy k= 0.3294,.

In order to obtain a solution for Q,, we express the boundary condition for this function at N = 0 as
Q;': Bo —T" SBl + 8232,

and the solution in the first approximation will be
4 5
P, = BN + Pq (0) ( | expl— 2a | GdN]dNdN. (18)
00 ]
It is evident from (18) that, if Pg(o) # 0, i.e., if a temperature jump occurs at the point £ =1, then the
magnitude of the thermal flux in the vicinity becomes infinite. We next consider the case where P (0)
= 0. The solution to the heat problem of the boundary layer at a semiinfinite plate will be written for two
cases, namely a thermally insulated plate and an isothermal plate [10]:
=l omery,
2

Ty, =1+ k—%i M
(19)

R e P R
with T w denoting the plate temperature and the subscript « referring to parameters of an inviscid fluid.
Using these relations, one can obtain solutions for these two cases, namely for a plate either thermally
insulated or isothermal up to the point £ = 1.

Initia] Plate Segment Thermally Insulated. The solution to the first equation in (9) is adjoined with
the first expression in (19) to become

E—1 '
P, :( 1+ 5 Mi) N. (20)

The second term of the second expansion (3) can be expressed as
P1=P10+61Pu +D1P12, (21)
where Pyy =N?, Pyj = [aFg(O)]‘1 / 3p1j{»[aFg(0)}1/ N}, i =1, 2. Functions p,j are determined from the expres-
sions
Py =1tp;,—Cpi,
Pu(0) =0, p;(0)=-1, pj (0)=0; (22)
P =0, pL0)=1, pp(0) =1

319



and are shown in Fig. 2a. Constants C, and D, can be easily determined from the boundary conditions at
N=0and N —o, '

Initial Plate Segment Isothermal, The solutions to the binomial will be written for the case where
the temperature of the initial plate segment is Tgy:

Tow
oo

Py =Py +C,Pyy + DiPyy, (24)

Py = N, (23)

where Pyy = 1/2F80) (1-Tgy /T, + k~1/2ME)N?, Pyy, and Py, are formally similar to the already found
expressions in (6). Constants C, and D, can also be easily found from specific boundary conditions.

With the aid of these relations we now determine

} ] \ _ .
Ty = l/ Pt=Us 10,332 1 61.367a12 4] (25)
) X
for a plate with a thermally insulated initial segment:
TW:T,,[(1+ k;‘ M?,O)MBl ]
(26)
— 1/ Usb=
v = l/ e hT051TB,
and for a plate with an isothermal initial segment
TW = T()W + BT,,BI,
wDoo - T E—1
= AT w [0.5173 — 0.332( LA ML,
qw l/ [ 1 T. + p) (27)
where the value of ¢ obtained from the first equation in (5) with bj =0 will be
x3/2 — X3/2 1/3
— (____.iL_ (28)

xl/2
Wake behind a Plate, In order to obtain solutions for the wake region behind a plate, it is convenient

to make the following substitutions:
G; =20y g;[(20)2N], P;= (2ay~172p; [(2a)'/2 N]. (29)

Omitting all intermediate calculations, we show here the final results and the values of the essential
parameters:

RF,(0)=03737, k=0, k=0, g =0, g =0. (30)

Solutions g, and g, are shown in Fig. 2b, While finding the solutions for pj, we will also consider two dif-
ferent flow modes at the plate, ‘

Thermally Insulated Plate, The solutions for this case are simple:

kE—1 -

p‘,:(l—{— M20.1>t’ py =0,
| ¢ ’ (31)
po=—g =0 (g, pio.

0

Isothermal Plate, The solutions for this case are found by direct integrafion of the equations for pj:

Py = ;W t, p1=(1~~ o +‘~“‘“M2w)gur

: t (32)
P ) (f—1)M2 yg;’dt’ Ps=0.
]
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We now determine the velocity in the wake region along the x-axis;

u = Us [£0.675 4 ¢*0.0563] (33)
and the temperature for hoth cases: 7
for a thermally insulated plate
'rzrw{(1.+. Eo o) —erousy £ M’f’,,], (34)

for an isothermal plate

E—1 1

M } . {35)

Tow Tow k—1
T=Te|—— +e0.675} 1| —
[ T t ( T. + 2

The dimensionless velocity in the wake along the x-axis, as calculated according to formula (33), is shown
in Fig. 3.

Mi) — 20.457

oo

NOTATION

is the dynamic viscosity;
is the temperature;
r is the Prandtl number;
is the flow function;
a is the Mach number for outer stream;
is the velocity;
is the density;
is the thermal] conductivity;
is the adiabatic exponent,

g E

W‘V‘Dﬂg‘%
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